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An extension of the model of Coulomb’s friction forces to the case of anisotropic friction, when the friction
coefficients depend on the coordinates of the points of the contacting surfaces and their mutual orientation

is proposed. The anisotropy can be due both to the properties of one of the contact surfaces (for example,
the presence of “furrows” in the contact surface and their orientation), and to the corresponding properties
of both contact surfaces and the position of the contact areas on the surfaces of the contacting bodies. When
the properties of the surfaces of the interacting bodies are independent of the direction of the relative
velocity and the mutual orientation of the bodies, the proposed model is identical with the classical
Coulomb dry friction model. One of the models of anisotropic friction, which, in the limiting case when
the friction force approaches infinity, reduces to a unilateral ideal unilateral constraint, is discussed.
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Coulomb dry-friction forces have been used for a long time when
describing the motions of mechanical systems. From the mathe-
matical point of view, a feature of the model of dry-friction forces is
the discontinuous form of the functions describing the interaction
of solid bodies, which leads to difficulties when describing possi-
ble motions of the system and in the numerical modelling of the
equations of motion. Some “paradoxes” and general properties of
the motions of systems with dry friction were investigated in Refs.
1-10.

1. The construction of models of dissipative forces and the
properties of the motions

Generalized forces in Lagrangian mechanics are said to be dis-
sipative if their power is less than or equal to zero (the equality to
zero must not be identical), i.e.

k
z Qi(qv q, t)qi <0

i=1

Here Q; are generalized forces, and g; and ¢; are generalized coor-
dinates and velocities (i=1, ..., k). If, in a certain simply connected
region of the generalized velocities, for any permissible values
of the coordinates and time, the generalized forces have partial
derivatives with respect to the generalized velocities and Cauchy’s
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are satisfied, then the differential form

k
. . . oW
Y 04, q,dd; = ~dW(4, q,1) = Q; = S

i=1

If the number of degrees of freedom k =1, the dissipative function
W(q, q, t) exists and is equal to the primitive

W = -[0(¢, ¢, Ddd

when calculating which the generalized coordinate g and time are
assumed as the parameters.

We will consider the motion of a flat plate on a horizontal rough
plane. Theorems on the change in the momentum of the plate and
in the angular momentum about the centre of mass can be repre-
sented in the form

mw =F, w=(X,X)), Jp =M

where X; and X, are the coordinates of the centre of mass of the
plate C in a fixed system of coordinates OX;X,X3 connected with
the plane, ¢ is the angle of rotation of the plate, J is the moment of
inertia of the plate about the CX3 axis, and F and M are the resultant
friction forces and moment of the friction forces about the CX3 axis.
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We will consider different methods of determining the quanti-
ties F and M. We will take as the basis of this determination the
idea of a dissipative function, which models the properties of the
interacting surfaces of the plate and the plane, for which we will
consider a homogeneous function of the generalized velocities of
order n>0

W(4,q)20, W(Ad,q) = [M"W(d,q), AeR',
q = (X, X5, 9)

We will assume that the dissipative function vanishes when and
only when all the generalized velocities are equal to zero.

As was noted above, the generalized friction forces are produced
by a dissipative function according to the rule

3
ow . .
0, = 55 T 1,2,3= Y 0,4, = -nW(q,q) <0

i i=1
As examples of dissipative functions, used when modelling
mechanical systems, we note the case n=1 (Coulomb dry friction),
n =2 (the dissipative Rayleigh function, and viscous friction which
obeys the Stokes law), and n =3 (the law of the drag of solid bodies
moving in gases). Friction forces acting on a plate lead to a reduction
inits kinetic energy in accordance with the theorem on its variation

daT

dt = —nW(Xb XZ, (p, le X27 (P) < 07

1 .2 .2 .2
T = 5Im(Xi+X2) +J¢7] (1.1)

The kinetic energy of the system is the square of the norm in a
finite-dimensional velocity space. In a similar way the dissipative
function generates an equivalent norm in velocity space and the
following inequalities hold

clﬁSWU"Sczﬁ, 0<c;<c,

using which, and relation (1.1), we obtain the inequalities

n/2 n/2

—nc;T < T < —nc';T (]_2)
Inequalities (1.2) enable us to judge the nature of the motion,
namely, the way in which the kinetic energy of the system
decreases.

When 0<n <2 the following estimates hold

1-n/2 1-n/2

T'"(0) = n(1 = n/2)t < T' "2 (1) < T 7"2(0) - n(1 = n/2)clt
from which it follows that the motion is completed not earlier than

the instant of time t; and not later than the instant of time t,, where

o= 1 Tl—-n/2(0), ty = 1 Tl—nIZ(O)

' n(i-n2)c! n(1-n/2)c®

When n =2 we obtain the following estimates for the kinetic energy
of the system

T(0)exp(-2cat) < T(f) < T(0)exp(-2c>1)
In this case the motion never stops, and the kinetic energy of the

system remains confined between the two decreasing exponential
functions.

Finally, when n >2 we have the estimates

- 1/(1-n/2)
[T ""%(0) + n(n12 - 1)}~ "

<T(1) < [T'""2(0) + n(ni2 - 1)ein " "%

In this case, as in the case when n=2, the motion never ceases and
the kinetic energy decreases, remaining enclosed between the two
decreasing rational-fractional functions.

The properties of the motions considered above remain true
in the case of mechanical systems of general form with station-
ary constraints. The realization of any particular dissipation model
depends on the specific model of the mechanical system consid-
ered and should be based on experimental results. It must not
be assumed that the procedure for constructing dissipative forces,
based on homogeneous dissipative functions, considered above is
the only method of taking the interaction between contacting bod-
ies into account.

For example, if a point moves over a rough horizontal circle, its
equation of motion, taking into account the forces of dry friction,
can be written in the form

§ = —fA/g2 + j4r_2signs‘

where s(t) is the length of the arc of the circle of radius r traversed
by the point, g is the acceleration due to gravity and fis the coeffi-
cient of the dry-friction forces. This example is not described within
the framework of the scheme considered above. However, when
there is no gravity, the dissipative function can be represented by a
homogeneous function of order three, and as the radius of the circle
approaches infinity the dissipative function is of the order of unity.
Note that in this example one can construct an inhomogeneous
dissipative function.

2. Anisotropic dry friction in the case of a plate of small
dimensions

If the moment of inertia of the plate J is sufficiently large, and its
contact area with the plane is sufficiently small and the moment
of the friction force about the centre of mass of the plate is small,
we can assume the angular velocity of rotation of the plate to be
constant and consider it as equivalent to a point mass, moving along
the plane under the action of the dry-friction force. Suppose the
rough plane possesses anisotropy: the coefficients of dry friction
are different for motion along the fixed OX; and OX; axes. These
situations can be modelled by taking the dissipative function in the
form

2 2.172
W(V,V,) = FV, V =1[dVi+d,V;] ,
Vk’:Xk» dk>0, d1+d2= 1, F>0 (2.1)
Another model of the dissipative forces is possible when

W(V, V,) = Fld|Vy| +dy|V,|]

In the latter case the motion of the point can be represented by the
direct product of one-dimensional motions, determined from the
system of equations

mVy = —Fd,signV, = V,(t) = V,(0) - Fd,tsignV,

1 .
X (1) = X (0)+ V, (0)t - —deIZSIgnd, k=12
2 (2.2)
In the (V1, V») plane the trajectory of the representative point is a
straight line, intersecting one of the coordinate axes. Motion will
then occur in the direction of the origin of the system of coordinates
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along the coordinate axis with which the intersection of the straight
line, defined in relations (2.2), occurred. The trajectory of motion in
the 0X; X, plane consists of a curve in the first part and a rectilinear
section in the second part, which ends in a stop.

In the case of the model of dry friction specified by the dissipa-
tive function (2.1), the equations of motion have the form

ViV
dIV] - d2v2

k=12=

Without loss of generality, we will assume V; > 0, Vj < 0. Then,
the trajectory of the representative point in the (Vq, V) plane is
described by the equation

d, d, d, d,
ViV, (0) = V, V,(0)
Hence it follows that, in the general case, motions along the coordi-
nate axes are completed simultaneously, when the representative

point reaches the origin of coordinates. The time dependence of V;
is found from the relation

F,./d d
_[ J1+cVidv, = _LI, o = 2(_3_ 1)
m d,
V,(0) (2.3)

where c is a constant, determined from the initial conditions. The
integralin this relation is evaluated in explicit formifd; =d, =1/2.In
this case, the trajectory in the (V1, V5 ) plane is a straight line passing
through the origin of coordinates, while the plane itself, from the
point of view of the properties of the dry-friction forces, becomes
isotropic. In general, the integral in (2.3) is evaluated by expand-
ing the integrand in series. A characteristic feature of the forces
of anisotropic dry friction, in the general situation is the fact that
the friction forces do not coincide with the direction of the veloc-
ity of motion of the point, which leads to curving of the trajectory
of motion. If the friction is isotropic (d; =d; =1/2), the hodograph
of the velocity and the trajectory of motion of the point become
straight lines.

The anisotropy of the dry-friction forces can be explained by
the properties of the surface of the plate, which is displaced over
the plane. Using the hypotheses formulated above we will assume
that the plate is rotated with constant angular velocity w. We will
introduce moving coordinates Cx;x,x3, connected with the plate,
and we will denote the projections of the velocity of the centre of
mass onto the axis of the moving system of coordinates by v; and v.
We will choose the dissipative function, which takes into account
the anisotropy of the plate, by analogy with function (2.1), in the
form

”
W(v, vy) = Fu, v = [dlvf+d2v§]l , dy+dy, =1

We will represent the equations of motion of the mass centre in
projections onto the moving axes in the form

m(V; - 0v,) = —g—r)v = —Fdlvlv_l,
1

m(D, + 0V;) = —g—vwi = —Fdzvzv'1 2.4
2 .

The system of second-order differential equations is not integrable

in explicit form. FromEq. (2.4) we have the equation
1d, 2, 2 -1
=—(Vi+V,)) =-Fm v
s Vit )

which defines the change in the kinetic energy. A simple analysis,
similar to that carried out in Section 1, enables us to conclude that

the motion of the mass centre ends after a finite time interval.

In the model considered above it was assumed that the plate
rotates with constant angular velocity, which is possible if we
neglect the moment of the friction forces about the Cx3 axis. This
is justified when the dimensions of the contact area of the plate
are small and the moment of rotational friction is correspondingly
small. In this case we can assume that the angular velocity of rota-
tion of the plate is almost constant in the time interval until the
mass centre of the plate stops.

3. A model of anisotropic friction for a plate of finite
dimensions

We will consider the simplest generalization of the models, pre-
sented in Section 2, in the case when the translational and rotational
motions of the plate are taken into account.

Suppose the property of anisotropy of the friction is due to the
fixed plane on which the plate of finite dimensions moves. This
means that the coefficients of friction are different, for example,
along the OX; and OX, axes due to the presence of “furrows” in
the plane. If a uniform rough plate of finite dimensions moves over
this plane, the dissipative function of the dry-friction forces can be
represented in the form

. 12
W(d,q) = [[F(r,@)[d,(E,, V)" + dy(Ey, V)] dx,dx,
D
re D, q = (X, X5, ), V = Re+Q[E; xT3()rl,
Re = (X1, X,), dy+d, = 1

cos@ —sing 0
I'3(9) = | sing cosg 0
0 0 1

(31)

Here D is the region occupied by the plate, r is the radius-vector of
a point of the plate in the moving system of coordinates Cxx2x3
connected with the plate with the origin in its mass centre, E is
the unit vector of the fixed system of coordinates OX;X>X3, ['3(¢)
is the orthogonal operator of rotation of the plate by an angle ¢
with respect to the Cxs axis, and R is the radius-vector of the mass
centre of the plate with respect to the fixed system of coordinates
0X1X>X3. The function F(r, q) is positive, has an upper bound and
defines the specific value of the dry-friction force. The coefficients
dy and d, are constant when the characteristics of the dry friction of
the plane are independent of the position of the point in the plane.
The friction becomes Coulomb friction when d; =d, =1/2.

Note that in the model considered we must give up the model of
an absolutely rigid body for the plate, since, in general, the surface of
the rigid body may be in contact with the plane at only three points,
while in the model considered above it was assumed that contact
occurs over a certain region D with a pressure, the value of which
depends on the coordinates of the points of contact and other kine-
matic characteristics of the motion (for example, the contact of a
pneumatic tyre with the road coating). Another way of determining
the specific friction force when two bodies are in contact is based
on the use of the Hertz model of the contact between two elastic
bodies and the corresponding normal pressure distribution.’

If the anisotropy of the dry-friction forces is due to the plate,
while the plane along which the plate moves is isotropic, then, using
the projections of the velocities of points of the plate onto the axes
of the moving system of coordinates Cx;x,X3, we can be represent
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the dissipative function in a form similar to (3.1)

W(4 @) = [[F(r, @)di(e;, T3(-0)V)” + dy(ey,
D

1/2
To(-@)V)7] dx,dt,, d)+dy=1 (32)

Here e and e, are the unit vectors of the moving system of coor-
dinates.

Model (3.1) can be used when describing the slippage of an
isotropic tyre (a “bald” protector) on asphalt with anisotropic fric-
tion, which occurs due to the longitudinal “furrows” on the road
when it is being repaired. The model of anisotropic friction (3.2) is
suitable when describing the slippage of a tyre with a non-worn
protector (the anisotropy of the friction is due to the pattern of the
protector) along a road, the surface of which is isotropic.

4. Slippage of a “motorcycle” on a plane with anisotropic
friction

We will consider, as an example, the simplest model of a “motor-
cycle” with locked wheels, when its plane remains orthogonal to
the horizontal plane, along which it moves. In fact we are dealing
with the motion of a plate, which is in contact with a rough plane
at two points. We will assume that the points of contact with the
plane have coordinates (%I, 0) in the Cx;x, system of coordinates,
connected with the motorcycle, where C is the mass centre of the
motorcycle and the third coordinate of the mass centre is much less
than L In this case we will neglect the effect of the acceleration of
the mass centre on the redistribution of the normal reactions at
the two points of contact of the front and rear wheels. The front
wheel of the motorcycle is turned through an angle ¢, which does
not change during the motion.

4.1. The first case

We will assume that the anisotropy of the friction is due to the
road and not due to the treads of the motorcycle wheels. We will
use the model of the dissipative function (3.1), the integral in which
reduces to the sum of two terms and can be represented in the form

W(X1, X2, X3,9) = F(V{+V,), X3 =10

v, = jdl[Xl + (-—l)"ngin(p]2+d2[X2—(—1)"X3costp]2,
n=12
(4.1)

Here X; and X; are the coordinates of the mass centre of the motor-
cycle in the fixed system of coordinates 0X;X>, along the axis of
which the property of dry-friction anisotropy manifests itself, ¢ is
the angle between the longitudinal axis of the motorcycle and the
0X; axis, and F is the specific value of the dry-friction force at the
points of contact of the motorcycle wheels with the road. The dis-
sipative function (4.1) is independent of the angle of rotation of the
front wheel.

The equations of motion, represented by the theorems on the
change in the momentum and in the angular momentum about
the mass centre, have the form

.. av, dV
Xy = -F(=2+ =2 k= 1,23,
3%, 9%

m; = my, = m,

(4.2)

where m and ] are the mass and moment of inertia of the motorcycle
about the mass centre. Equation (4.2) allow of the simplest classes
of motions: longitudinal motion and rotation about a fixed mass
centre. The longitudinal motion, when X;_g, exists for any value
of the angle ¢, since the right-hand side of the third equation of
system (4.2) then vanishes, and it is described by equations similar
to Eq. (2.2),

m¥X, = 2Fd XV, V= Jd Xi+dy X5, k=12

Rotation around the fixed mass centre also always exists and
described by the equation

J§ = —2FIA/;171 sinz(p+dzcosz(psign¢

The rotation ceases after a finite time interval.

In the general case, the translational and rotational motion of the
motorcycle affect one another and are determined by the solutions
of the system of non-linear equation (4.2)

4.2. The second case

If the anisotropy of the dry friction is due to the properties
of the tread of the motorcycle wheels, the dissipative function is
taken as that given by expression (3.2), when the integral on the
right-hand side is replaced by the sum of two terms. Using the
projection of the velocities of the points of contact onto the mov-
ing axes Cx1xy, we can represent the dissipative function in the
form

W(vy, 1, 03) = F(V,+V,) (43)
where
2 2
V, = J(1—kcos20)v? + (1 + kcos29) (0, + 3)
=2k (v, + v3)sin29
2 2 .
V, = J-00 + (1 +R)(0,-0)%5 vy = 1§, 0<k<1

(4.4)

It is assumed that the characteristics of the friction forces are the
same for the front and rear wheels of the motorcycle. Here v; and v,
are the projections of the velocity of the mass centre of the motor-
cycle onto its longitudinal and transverse axes, connected with the
motorcycle and rotating with an angular velocity ¢, while ¥ is the
fixed angle of rotation of the front wheel.

The equations of motion, represented by theorems on the
change in the momentum and in the angular momentum about
the mass centre, have the form (see Eq. (2.4))

i - . - oW
m(v, -1 11)31)2) = —g—lv)l,, m(0y+1 11)31)1) = _51)—2’
1
~ ow
Iy, = 2%
T (4.5)

The system of equation (4.2), according to the discussion in Section
1, has solutions which approach zero after a finite time. Particular
solutions of the equations, corresponding to certain initial condi-
tions, can be investigated by numerical methods.

We will investigate the simplest types of motions of the motor-
cycle with locked wheels: translational motion and rotation about
the mass centre. In the first case the angle ¢ is constant (v3 = 0),
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and from the third equation of system (4.5) we have the equality

v, IV 1
8_1)31+a_1)32 =0= V] [(1 +kcos2¥)v, -

kv,sin29] = V;'(1+k)v, (46)
The functions v; and v, are defined by Eq. (4.4) when v3 = 0.

The conditions (4.6) are satisfied for any v; and v, if the motorcy-
cle wheels are in the single plane ©# =0, . In this case translational
motions of the motorcycle exist, described by the first two equa-
tions of system (4.5):

mi, = —2FV(1-k)v,, m, = 2FV"'(1+k)v,,

v =Ja-tv+(1+0v (47)

which are similar to the corresponding equations in Section 2.
In the case of an arbitrary angle of rotation of the front wheel,
the necessary condition for translational motions (4.6) to exist
is represented by an equation in the ratio v;/v,. Translational
motion will exist if the value of the ratio obtained from Eq.
(4.6) is retained by virtue of the first two equations of system
(4.5).

In the case of rotation around the Cx3 axis, the relations
vi =V =0, v3#0 hold, for which the right-hand sides of the
first two equations of system (4.4) must be identically equal to
zero:

Vi'0sksin29 = 0, [V;'(1+ksin20) -V, (1+k)]v, = 0

V, = J(1+kcos20)v3, V, = J(1+k)v= sin29 = 0,

J1+kcos2® = J1+k

The last conditions will hold if the angle of rotation of the front
wheel ¥ =0, . The angle of rotation of the motorcycle in this case
is found from the equation

J§ = —2F1J1 + ksignp = @(1) =
©(0) + ¢p(0)r — FI* /1 + ksign

The motorcycle rotates uniformly slowly and stops after a finite
time.

5. Unilateral non-holonomic constraints

We will consider the well-known problem of the Chap-
lygin sleigh, when the following bilateral non-holonomic
constraint

—Xsin@ +ycos@ = 0 (5.1)

is imposed on the displacement of the mass centre of a rigid body,
performing plane-parallel motion. Here x, y and ¢ are the coordi-
nates of the mass centre of the sleigh and its angle of rotation about
the fixed OX axis. We will assume that at the contact point the shape
of the blade of the sleigh can be represented by a hemisphere, the
plane of cross-section of which is orthogonal to the horizontal OXY
plane, on which slippage of the sleigh occurs. In this case it is logical
to assume that the sleigh can slide along the blades and is displaced
sideways, coinciding with the convexity of the hemisphere, while
the rate of displacement of the contact point in the opposite direc-
tion, corresponding to the sharp edge of the hemisphere, is equal
to zero. In fact, we are dealing with a sleigh in which one of the
sides of the blade is sharp, while the other is blunted and does not

shift the sleigh sideways. Then, a unilateral non-holonomic con-
straint occurs which is described by an inequality which arises from
relation (5.1):11

—Xsing + ycos@ =0 (5.2)

The angular velocity of rotation of the sleigh remains constant
during the whole motion, and the trajectory of the mass cen-
tre consists of two parts:!! uniform motion over the section of
a straight line with a change to uniform motion in a circle. The
first stage of the motion exists if, at the initial instant of time,
we have a strict inequality in relation (5.2), while the transition
to the second stage corresponds to the vanishing of the left-hand
side of inequality (5.2), which remains equal to zero during the
whole of the second stage (the classical problem of a Chaplygin
sleigh).

We will assume that constraint (5.2) is not imposed on the
system, and dissipative forces act, which generate the dissipative
function

1 . . .
W = ﬁmb(|v2|—1)2), v, = —Xsin@+ ycos®, b>0
We will represent the equations of motion of the system, according

to Eq. (2.4), in the form

U -0v, =0, D+0v, =¥(v,), ®=¢ = const

b, v,<0
¥(v,) =<{bE, 0<E<1, v,=0
0, v,>0

(5.3)

the function —\W(v,) for non-zero values of the argument is equal
to the derivative of the dissipative function W(v,), divided by the
mass. The function W(v,) can take any values in the interfval [0, b]
for a zero value of the argument.

The model of the friction presented can be regarded as “unilat-
eral” anisotropic dry friction.If v{(0) < b/w at the initial instant, the
motion of the sleigh, according to Eq. (5.3), can occur in accordance
with three scenarios.

5.1. The first case

If v2(0) = 0 at the initial instant of time, system (5.3) has the
solution

V(1) = v,(0) = bE/®w = F(0), V(1) =0

This motion is identical with the motion of a Chaplygin sleigh, when
the mass centre describes a circle with constant velocity.

5.2. The second case

If v2(0) > 0, the system of equation (5.3) can be represented in
the form
i+inz =0, z =, +iv,=2z(t) = vexpli(a-owt)]

,(0) = vcosa, 1V,(0) = vsino,, V>0, O<o<mw

(5.4)

According to solution (5.4), the system moves as a plate on a smooth
plane with constant velocity of the mass centre and constant
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angular velocity. This motion occurs in the time interval (0, t1), t; =
o/w. At the instant of time t; the component of the velocity
v,(t1) vanishes, and further motion occurs according to the first
case.

5.3. The third case

If v(0) < 0, the system of equation (5.3) can be represented in
the form

2+inz = b= z(t) = [1-exp(-iwt)]b/o® + vexp[i(P — wr)]
v,(0) = vcosP, v,(0) = vsinB, v>0, -w<P<O

(5.5)
If bw~1 > v, the component of the velocity
v,(f) = Imz(f) = vsin(P - o1) + b~ sin(wr)

vanishes fairly rapidly, and further motion will occur according to
the first case. The value of the instant of time when the transverse
component of the velocity of the mass centre of the sleigh vanishes
is described by the quantity

ty= —vab™ sinf3

In the limit, when the parameter b, which defines the value of the
friction force, approaches infinity, the unilateral non-holonomic
constraint (5.2) is obtained.
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